A Global Convergence Theorem for a Class of Parallel ContinuousExplicit Runge - Kutta Methods and Vanishing Lag DelayDi erential

نویسنده

  • T. H. Baker
چکیده

Iterated continuous extensions (ICEs) are continuous explicit Runge-Kutta methods developed for the numerical solution of evolutionary problems in ordinary and delay diierential equations (DDEs). ICEs have a particular r^ ole in the explicit solution of DDEs with vanishing lags. They may be regarded as parallel continuous explicit Runge-Kutta (PCERK) methods, as they allow advantage to be taken of parallel architectures. ICEs can also be related to a collocation method. The purpose of this paper is to provide a theorem giving the global order of convergence for variable-step implementations of ICEs applied to state-dependent DDEs with and without vanishing lags. Implications of the theory for the implementation of this class of methods are discussed and demonstrated. The results establish that our approach allows the construction of PCERK methods whose order of convergence is restricted only by the continuity of the solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DKLAG6: A Code Based on Continuously Imbedded Sixth Order Runge{Kutta Methods for the Solution of State Dependent Functional Di erential Equations

This paper discusses a new family of sixth{order continuously imbedded Runge{Kutta{ Sarafyan methods and a mathematical software package DKLAG6 for the numerical solution of systems of functional di erential equations with state dependent delays. The methods used are based on piecewise polynomial approximants which are used for error estimation and stepsize selection, to handle the necessary in...

متن کامل

Triangularly Implicit Iteration Methods for ODE-IVP Solvers

It often happens that iteration processes used for solving the implicit relations arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. Fast convergence right from the beginning is particularly important if we want to use so-called step-parallel iteration in which the iteration method is concurrently applied at a number of step points. In this paper, we...

متن کامل

High Order Explicit Two - Step Runge - Kutta

In this paper we study a class of explicit pseudo two-step Runge-Kutta methods (EPTRK methods) with additional weights v. These methods are especially designed for parallel computers. We study s-stage methods with local stage order s and local step order s + 2 and derive a suucient condition for global convergence order s+2 for xed step sizes. Numerical experiments with 4-and 5-stage methods sh...

متن کامل

Galerkin/Runge-Kutta Discretizations for Parabolic Equations with Time-Dependent Coefficients

A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial-boundary value problems with time-dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order of convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved and computati...

متن کامل

Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows

This paper is concerned with time-stepping numerical methods for computing sti semi-discrete systems of ordinary di erential equations for transient hypersonic ows with thermo-chemical nonequilibrium. The sti ness of the equations is mainly caused by the viscous ux terms across the boundary layers and by the source terms modeling nite-rate thermo-chemical processes. Implicit methods are needed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994